Multi-agent Monte Carlo Go

نویسندگان

  • Leandro Soriano Marcolino
  • Hitoshi Matsubara
چکیده

In this paper we propose a Multi-Agent version of UCT Monte Carlo Go. We use the emergent behavior of a great number of simple agents to increase the quality of the Monte Carlo simulations, increasing the strength of the artificial player as a whole. Instead of one agent playing against itself, different agents play in the simulation phase of the algorithm, leading to a better exploration of the search space. We could significantly overcome Fuego, a top Computer Go software. Emergent behavior seems to be the next step of Computer Go development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Monte Carlo Approach for Football Play Generation

Learning effective policies in multi-agent adversarial games is a significant challenge since the search space can be prohibitively large when the actions of all the agents are considered simultaneously. Recent advances in Monte Carlo search methods have produced good results in single-agent games like Go with very large search spaces. In this paper, we propose a variation on the Monte Carlo me...

متن کامل

Exploration exploitation in Go: UCT for Monte-Carlo Go

Algorithm UCB1 for multi-armed bandit problem has already been extended to Algorithm UCT which works for minimax tree search. We have developed a Monte-Carlo program, MoGo, which is the first computer Go program using UCT. We explain our modifications of UCT for Go application, among which efficient memory management, parametrization, ordering of non-visited nodes and parallelization. MoGo is n...

متن کامل

Monte-Carlo Tree Search in Settlers of Catan

Games are considered important benchmark opportunities for artificial intelligence research. Modern strategic board games can typically be played by three or more people, which makes them suitable test beds for investigating multi-player strategic decision making. Monte-Carlo Tree Search (MCTS) is a recently published family of algorithms that achieved successful results with classical, two-pla...

متن کامل

Multi-player Go

Multiplayer Go is Go played with more than two colors. Monte-Carlo tree search is an adequate algorithm to program the game of Go with two players. We address the application of Monte-Carlo tree search to multiplayer Go.

متن کامل

A reinforcement learning scheme for a multi-agent card game with Monte Carlo state estimation

This article presents the state estimation method based on Monte Carlo sampling in a partially observable situation. We formulate an automatic strategy acquisition problem for the multi-agent card game “Hearts” as a reinforcement learning (RL) problem. Since there are often a lot of unobservable cards in this game, RL is dealt with in the framework of a partially observable Markov decision proc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011